Information on Result #717769

Linear OA(947, 95, F9, 26) (dual of [95, 48, 27]-code), using construction XX applied to C1 = C([77,20]), C2 = C([1,22]), C3 = C1 + C2 = C([1,20]), and C∩ = C1 ∩ C2 = C([77,22]) based on
  1. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,20}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  2. linear OA(936, 80, F9, 22) (dual of [80, 44, 23]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,22}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.