Information on Result #717792
Linear OA(951, 100, F9, 27) (dual of [100, 49, 28]-code), using construction XX applied to C1 = C([77,19]), C2 = C([1,23]), C3 = C1 + C2 = C([1,19]), and C∩ = C1 ∩ C2 = C([77,23]) based on
- linear OA(938, 80, F9, 23) (dual of [80, 42, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(938, 80, F9, 23) (dual of [80, 42, 24]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,23}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(931, 80, F9, 19) (dual of [80, 49, 20]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(951, 50, F9, 2, 27) (dual of [(50, 2), 49, 28]-NRT-code) | [i] | OOA Folding |