Information on Result #717853

Linear OA(964, 109, F9, 34) (dual of [109, 45, 35]-code), using construction XX applied to C1 = C([11,40]), C2 = C([7,31]), C3 = C1 + C2 = C([11,31]), and C∩ = C1 ∩ C2 = C([7,40]) based on
  1. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,40}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  2. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,31}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  4. linear OA(934, 80, F9, 21) (dual of [80, 46, 22]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,31}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.