Information on Result #717856

Linear OA(963, 107, F9, 34) (dual of [107, 44, 35]-code), using construction XX applied to C1 = C([10,40]), C2 = C([7,31]), C3 = C1 + C2 = C([10,31]), and C∩ = C1 ∩ C2 = C([7,40]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,40}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,31}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  4. linear OA(935, 80, F9, 22) (dual of [80, 45, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,31}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(963, 53, F9, 2, 34) (dual of [(53, 2), 43, 35]-NRT-code) [i]OOA Folding