Information on Result #717876

Linear OA(964, 104, F9, 35) (dual of [104, 40, 36]-code), using construction XX applied to C1 = C([8,40]), C2 = C([6,31]), C3 = C1 + C2 = C([8,31]), and C∩ = C1 ∩ C2 = C([6,40]) based on
  1. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,40}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,31}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,40}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,31}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(964, 52, F9, 2, 35) (dual of [(52, 2), 40, 36]-NRT-code) [i]OOA Folding