Information on Result #717877

Linear OA(968, 108, F9, 36) (dual of [108, 40, 37]-code), using construction XX applied to C1 = C([9,41]), C2 = C([6,31]), C3 = C1 + C2 = C([9,31]), and C∩ = C1 ∩ C2 = C([6,41]) based on
  1. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,41}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,31}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  3. linear OA(956, 80, F9, 36) (dual of [80, 24, 37]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {6,7,…,41}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,31}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.