Information on Result #717911

Linear OA(962, 99, F9, 35) (dual of [99, 37, 36]-code), using construction XX applied to C1 = C([77,30]), C2 = C([5,31]), C3 = C1 + C2 = C([5,30]), and C∩ = C1 ∩ C2 = C([77,31]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,30}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,31}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−3,−2,…,31}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(943, 80, F9, 26) (dual of [80, 37, 27]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {5,6,…,30}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(98, 17, F9, 7) (dual of [17, 9, 8]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.