Information on Result #717946

Linear OA(932, 80, F9, 20) (dual of [80, 48, 21]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,29}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3111, 141, F3, 41) (dual of [141, 30, 42]-code) [i]Concatenation of Two Codes
2Linear OA(3110, 138, F3, 41) (dual of [138, 28, 42]-code) [i]
3Linear OA(976, 122, F9, 39) (dual of [122, 46, 40]-code) [i]Construction XX with Cyclic Codes
4Linear OA(973, 119, F9, 37) (dual of [119, 46, 38]-code) [i]
5Linear OA(974, 119, F9, 39) (dual of [119, 45, 40]-code) [i]
6Linear OA(978, 124, F9, 40) (dual of [124, 46, 41]-code) [i]
7Linear OA(977, 119, F9, 40) (dual of [119, 42, 41]-code) [i]
8Linear OA(981, 127, F9, 41) (dual of [127, 46, 42]-code) [i]
9Linear OOA(932, 40, F9, 2, 20) (dual of [(40, 2), 48, 21]-NRT-code) [i]OOA Folding