Information on Result #717978

Linear OA(975, 118, F9, 40) (dual of [118, 43, 41]-code), using construction XX applied to C1 = C([9,39]), C2 = C([0,29]), C3 = C1 + C2 = C([9,29]), and C∩ = C1 ∩ C2 = C([0,39]) based on
  1. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,39}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(934, 80, F9, 21) (dual of [80, 46, 22]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,29}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(99, 18, F9, 8) (dual of [18, 9, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(975, 59, F9, 2, 40) (dual of [(59, 2), 43, 41]-NRT-code) [i]OOA Folding