Information on Result #717982

Linear OA(975, 119, F9, 40) (dual of [119, 44, 41]-code), using construction XX applied to C1 = C([70,20]), C2 = C([0,29]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([70,29]) based on
  1. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,20}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,29}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(933, 80, F9, 21) (dual of [80, 47, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(99, 19, F9, 8) (dual of [19, 10, 9]-code), using
    • 1 times truncation [i] based on linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(976, 120, F9, 40) (dual of [120, 44, 41]-code) [i]Code Embedding in Larger Space