Information on Result #717985

Linear OA(974, 115, F9, 40) (dual of [115, 41, 41]-code), using construction XX applied to C1 = C([8,39]), C2 = C([0,29]), C3 = C1 + C2 = C([8,29]), and C∩ = C1 ∩ C2 = C([0,39]) based on
  1. linear OA(949, 80, F9, 32) (dual of [80, 31, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,39}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(936, 80, F9, 22) (dual of [80, 44, 23]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,29}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(98, 15, F9, 7) (dual of [15, 7, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.