Information on Result #718002

Linear OA(971, 109, F9, 40) (dual of [109, 38, 41]-code), using construction XX applied to C1 = C([70,23]), C2 = C([0,29]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C([70,29]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,23}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,29}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  4. linear OA(939, 80, F9, 24) (dual of [80, 41, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(95, 9, F9, 5) (dual of [9, 4, 6]-code or 9-arc in PG(4,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.