Information on Result #718039

Linear OA(983, 124, F9, 43) (dual of [124, 41, 44]-code), using construction XX applied to C1 = C([9,42]), C2 = C([0,31]), C3 = C1 + C2 = C([9,31]), and C∩ = C1 ∩ C2 = C([0,42]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,42}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
  4. linear OA(937, 80, F9, 23) (dual of [80, 43, 24]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,31}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(913, 26, F9, 10) (dual of [26, 13, 11]-code), using
  6. linear OA(99, 18, F9, 8) (dual of [18, 9, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(983, 62, F9, 2, 43) (dual of [(62, 2), 41, 44]-NRT-code) [i]OOA Folding