Information on Result #718075

Linear OA(973, 107, F9, 43) (dual of [107, 34, 44]-code), using construction XX applied to C1 = C([70,29]), C2 = C([0,32]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([70,32]) based on
  1. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,29}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  2. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,32}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(973, 53, F9, 2, 43) (dual of [(53, 2), 33, 44]-NRT-code) [i]OOA Folding