Information on Result #718090

Linear OA(979, 116, F9, 43) (dual of [116, 37, 44]-code), using construction XX applied to C1 = C([9,42]), C2 = C([0,33]), C3 = C1 + C2 = C([9,33]), and C∩ = C1 ∩ C2 = C([0,42]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,42}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
  3. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
  4. linear OA(941, 80, F9, 25) (dual of [80, 39, 26]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,33}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(99, 18, F9, 8) (dual of [18, 9, 9]-code), using
  6. linear OA(99, 18, F9, 8) (dual of [18, 9, 9]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(979, 58, F9, 2, 43) (dual of [(58, 2), 37, 44]-NRT-code) [i]OOA Folding