Information on Result #718122

Linear OA(978, 110, F9, 45) (dual of [110, 32, 46]-code), using construction XX applied to C1 = C([11,51]), C2 = C([7,41]), C3 = C1 + C2 = C([11,41]), and C∩ = C1 ∩ C2 = C([7,51]) based on
  1. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,51}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,41}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  3. linear OA(965, 80, F9, 45) (dual of [80, 15, 46]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,51}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  4. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,41}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(978, 55, F9, 2, 45) (dual of [(55, 2), 32, 46]-NRT-code) [i]OOA Folding