Information on Result #718131

Linear OA(976, 105, F9, 45) (dual of [105, 29, 46]-code), using construction XX applied to C1 = C([9,51]), C2 = C([7,41]), C3 = C1 + C2 = C([9,41]), and C∩ = C1 ∩ C2 = C([7,51]) based on
  1. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,51}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  2. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,41}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  3. linear OA(965, 80, F9, 45) (dual of [80, 15, 46]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,51}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  4. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,41}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.