Information on Result #718162

Linear OA(978, 109, F9, 46) (dual of [109, 31, 47]-code), using construction XX applied to C1 = C([9,49]), C2 = C([1,39]), C3 = C1 + C2 = C([9,39]), and C∩ = C1 ∩ C2 = C([1,49]) based on
  1. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,49}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  4. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,39}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(94, 10, F9, 4) (dual of [10, 6, 5]-code or 10-arc in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(978, 54, F9, 2, 46) (dual of [(54, 2), 30, 47]-NRT-code) [i]OOA Folding