Information on Result #718164

Linear OA(986, 117, F9, 50) (dual of [117, 31, 51]-code), using construction XX applied to C1 = C([10,50]), C2 = C([1,39]), C3 = C1 + C2 = C([10,39]), and C∩ = C1 ∩ C2 = C([1,50]) based on
  1. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,50}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,50], and designed minimum distance d ≥ |I|+1 = 51 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,39}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(912, 20, F9, 10) (dual of [20, 8, 11]-code), using
  6. linear OA(99, 17, F9, 8) (dual of [17, 8, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.