Information on Result #718175

Linear OA(989, 120, F9, 51) (dual of [120, 31, 52]-code), using construction XX applied to C1 = C([9,51]), C2 = C([1,39]), C3 = C1 + C2 = C([9,39]), and C∩ = C1 ∩ C2 = C([1,51]) based on
  1. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,51}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  2. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,51], and designed minimum distance d ≥ |I|+1 = 52 [i]
  4. linear OA(947, 80, F9, 31) (dual of [80, 33, 32]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,39}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(914, 26, F9, 11) (dual of [26, 12, 12]-code), using
  6. linear OA(98, 14, F9, 7) (dual of [14, 6, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.