Information on Result #718197

Linear OA(993, 127, F9, 52) (dual of [127, 34, 53]-code), using construction XX applied to C1 = C([10,51]), C2 = C([0,39]), C3 = C1 + C2 = C([10,39]), and C∩ = C1 ∩ C2 = C([0,51]) based on
  1. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,51}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  3. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,39}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(914, 27, F9, 11) (dual of [27, 13, 12]-code), using
  6. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(993, 63, F9, 2, 52) (dual of [(63, 2), 33, 53]-NRT-code) [i]OOA Folding