Information on Result #718248

Linear OA(988, 113, F9, 54) (dual of [113, 25, 55]-code), using construction XX applied to C1 = C([69,39]), C2 = C([1,42]), C3 = C1 + C2 = C([1,39]), and C∩ = C1 ∩ C2 = C([69,42]) based on
  1. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,39}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  2. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(972, 80, F9, 54) (dual of [80, 8, 55]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,42}, and designed minimum distance d ≥ |I|+1 = 55 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(914, 26, F9, 11) (dual of [26, 12, 12]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.