Information on Result #718260

Linear OA(990, 114, F9, 55) (dual of [114, 24, 56]-code), using construction XX applied to C1 = C([68,39]), C2 = C([0,42]), C3 = C1 + C2 = C([0,39]), and C∩ = C1 ∩ C2 = C([68,42]) based on
  1. linear OA(969, 80, F9, 52) (dual of [80, 11, 53]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,39}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  2. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
  3. linear OA(974, 80, F9, 55) (dual of [80, 6, 56]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,42}, and designed minimum distance d ≥ |I|+1 = 56 [i]
  4. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(914, 27, F9, 11) (dual of [27, 13, 12]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.