Information on Result #718310

Linear OA(997, 119, F9, 61) (dual of [119, 22, 62]-code), using construction XX applied to C1 = C([10,61]), C2 = C([1,49]), C3 = C1 + C2 = C([10,49]), and C∩ = C1 ∩ C2 = C([1,61]) based on
  1. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,61}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  2. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  3. linear OA(974, 80, F9, 61) (dual of [80, 6, 62]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,61], and designed minimum distance d ≥ |I|+1 = 62 [i]
  4. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,49}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(914, 24, F9, 11) (dual of [24, 10, 12]-code), using
  6. linear OA(99, 15, F9, 8) (dual of [15, 6, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.