Information on Result #718317

Linear OA(999, 117, F9, 63) (dual of [117, 18, 64]-code), using construction XX applied to C1 = C([9,69]), C2 = C([1,49]), C3 = C1 + C2 = C([9,49]), and C∩ = C1 ∩ C2 = C([1,69]) based on
  1. linear OA(974, 80, F9, 61) (dual of [80, 6, 62]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,69}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  2. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,69], and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,49}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  5. linear OA(916, 28, F9, 13) (dual of [28, 12, 14]-code), using
  6. linear OA(97, 9, F9, 7) (dual of [9, 2, 8]-code or 9-arc in PG(6,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.