Information on Result #718322

Linear OA(992, 114, F9, 60) (dual of [114, 22, 61]-code), using construction XX applied to C1 = C([10,59]), C2 = C([0,49]), C3 = C1 + C2 = C([10,49]), and C∩ = C1 ∩ C2 = C([0,59]) based on
  1. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,59}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  2. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  4. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,49}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code), using
  6. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(992, 57, F9, 2, 60) (dual of [(57, 2), 22, 61]-NRT-code) [i]OOA Folding