Information on Result #718332

Linear OA(9104, 129, F9, 62) (dual of [129, 25, 63]-code), using construction XX applied to C1 = C([11,61]), C2 = C([0,49]), C3 = C1 + C2 = C([11,49]), and C∩ = C1 ∩ C2 = C([0,61]) based on
  1. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,61}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  2. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(975, 80, F9, 62) (dual of [80, 5, 63]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,61], and designed minimum distance d ≥ |I|+1 = 63 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,49}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(914, 26, F9, 11) (dual of [26, 12, 12]-code), using
  6. linear OA(913, 23, F9, 10) (dual of [23, 10, 11]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.