Information on Result #718352

Linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,39}, and designed minimum distance d ≥ |I|+1 = 60

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(971, 80, F9, 58) (dual of [80, 9, 59]-code) [i]Strength Reduction
2Linear OA(971, 80, F9, 57) (dual of [80, 9, 58]-code) [i]
3Linear OA(971, 80, F9, 56) (dual of [80, 9, 57]-code) [i]
4Linear OA(971, 80, F9, 55) (dual of [80, 9, 56]-code) [i]
5Linear OA(9150, 158, F9, 119) (dual of [158, 8, 120]-code) [i]Repeating Each Code Word
6Linear OA(9149, 156, F9, 119) (dual of [156, 7, 120]-code) [i]
7Linear OA(9148, 154, F9, 119) (dual of [154, 6, 120]-code) [i]
8Linear OA(9147, 152, F9, 119) (dual of [152, 5, 120]-code) [i]
9Linear OA(9103, 125, F9, 63) (dual of [125, 22, 64]-code) [i]Construction XX with Cyclic Codes
10Linear OA(9107, 128, F9, 66) (dual of [128, 21, 67]-code) [i]
11Linear OA(9105, 126, F9, 65) (dual of [126, 21, 66]-code) [i]
12Linear OA(9103, 124, F9, 64) (dual of [124, 21, 65]-code) [i]
13Linear OA(9105, 125, F9, 66) (dual of [125, 20, 67]-code) [i]
14Linear OA(9103, 123, F9, 65) (dual of [123, 20, 66]-code) [i]
15Linear OA(9106, 125, F9, 67) (dual of [125, 19, 68]-code) [i]
16Linear OA(9104, 123, F9, 66) (dual of [123, 19, 67]-code) [i]
17Linear OOA(971, 40, F9, 2, 59) (dual of [(40, 2), 9, 60]-NRT-code) [i]OOA Folding
18Linear OOA(971, 26, F9, 3, 59) (dual of [(26, 3), 7, 60]-NRT-code) [i]