Information on Result #718377

Linear OA(990, 107, F9, 61) (dual of [107, 17, 62]-code), using construction XX applied to C1 = C([8,60]), C2 = C([0,50]), C3 = C1 + C2 = C([8,50]), and C∩ = C1 ∩ C2 = C([0,60]) based on
  1. linear OA(970, 80, F9, 53) (dual of [80, 10, 54]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,60}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  2. linear OA(966, 80, F9, 51) (dual of [80, 14, 52]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,50], and designed minimum distance d ≥ |I|+1 = 52 [i]
  3. linear OA(973, 80, F9, 61) (dual of [80, 7, 62]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,60], and designed minimum distance d ≥ |I|+1 = 62 [i]
  4. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,50}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  5. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code), using
  6. linear OA(97, 10, F9, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.