Information on Result #718388

Linear OA(997, 118, F9, 62) (dual of [118, 21, 63]-code), using construction XX applied to C1 = C([10,61]), C2 = C([0,51]), C3 = C1 + C2 = C([10,51]), and C∩ = C1 ∩ C2 = C([0,61]) based on
  1. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,61}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  2. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
  3. linear OA(975, 80, F9, 62) (dual of [80, 5, 63]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,61], and designed minimum distance d ≥ |I|+1 = 63 [i]
  4. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,51}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(997, 59, F9, 2, 62) (dual of [(59, 2), 21, 63]-NRT-code) [i]OOA Folding