Information on Result #718405

Linear OA(998, 116, F9, 63) (dual of [116, 18, 64]-code), using construction XX applied to C1 = C([19,71]), C2 = C([9,61]), C3 = C1 + C2 = C([19,61]), and C∩ = C1 ∩ C2 = C([9,71]) based on
  1. linear OA(970, 80, F9, 53) (dual of [80, 10, 54]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {19,20,…,71}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  2. linear OA(970, 80, F9, 53) (dual of [80, 10, 54]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,61}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  3. linear OA(977, 80, F9, 63) (dual of [80, 3, 64]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,71}, and designed minimum distance d ≥ |I|+1 = 64 [i]
  4. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {19,20,…,61}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  5. linear OA(910, 18, F9, 9) (dual of [18, 8, 10]-code), using
  6. linear OA(910, 18, F9, 9) (dual of [18, 8, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(998, 58, F9, 2, 63) (dual of [(58, 2), 18, 64]-NRT-code) [i]OOA Folding