Information on Result #718475

Linear OA(992, 102, F9, 69) (dual of [102, 10, 70]-code), using construction XX applied to C1 = C([71,51]), C2 = C([0,59]), C3 = C1 + C2 = C([0,51]), and C∩ = C1 ∩ C2 = C([71,59]) based on
  1. linear OA(974, 80, F9, 61) (dual of [80, 6, 62]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,51}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  2. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,59}, and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
  5. linear OA(99, 13, F9, 8) (dual of [13, 4, 9]-code), using
  6. linear OA(97, 9, F9, 7) (dual of [9, 2, 8]-code or 9-arc in PG(6,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.