Information on Result #718483

Linear OA(9110, 125, F9, 75) (dual of [125, 15, 76]-code), using construction XX applied to C1 = C([61,49]), C2 = C([0,59]), C3 = C1 + C2 = C([0,49]), and C∩ = C1 ∩ C2 = C([61,59]) based on
  1. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,49}, and designed minimum distance d ≥ |I|+1 = 70 [i]
  2. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  3. linear OA(979, 80, F9, 79) (dual of [80, 1, 80]-code or 80-arc in PG(78,9)), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,59}, and designed minimum distance d ≥ |I|+1 = 80 [i]
  4. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  5. linear OA(917, 28, F9, 14) (dual of [28, 11, 15]-code), using
  6. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9110, 125, F9, 74) (dual of [125, 15, 75]-code) [i]Strength Reduction
2Linear OA(9108, 123, F9, 73) (dual of [123, 15, 74]-code) [i]Truncation
3Linear OA(9107, 122, F9, 72) (dual of [122, 15, 73]-code) [i]
4Linear OOA(9110, 62, F9, 2, 75) (dual of [(62, 2), 14, 76]-NRT-code) [i]OOA Folding