Information on Result #718500
Linear OA(993, 100, F9, 75) (dual of [100, 7, 76]-code), using construction XX applied to C1 = C([11,79]), C2 = C([1,69]), C3 = C1 + C2 = C([11,69]), and C∩ = C1 ∩ C2 = C([1,79]) based on
- linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,79}, and designed minimum distance d ≥ |I|+1 = 70 [i]
- linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,69], and designed minimum distance d ≥ |I|+1 = 70 [i]
- linear OA(979, 80, F9, 79) (dual of [80, 1, 80]-code or 80-arc in PG(78,9)), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,79], and designed minimum distance d ≥ |I|+1 = 80 [i]
- linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,69}, and designed minimum distance d ≥ |I|+1 = 60 [i]
- linear OA(97, 10, F9, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,9)), using
- extended Reed–Solomon code RSe(3,9) [i]
- linear OA(97, 10, F9, 7) (dual of [10, 3, 8]-code or 10-arc in PG(6,9)) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(993, 50, F9, 2, 75) (dual of [(50, 2), 7, 76]-NRT-code) | [i] | OOA Folding |