Information on Result #718759
Linear OA(9136, 377, F9, 56) (dual of [377, 241, 57]-code), using construction XX applied to C1 = C([360,50]), C2 = C([0,51]), C3 = C1 + C2 = C([0,50]), and C∩ = C1 ∩ C2 = C([360,51]) based on
- linear OA(9130, 364, F9, 55) (dual of [364, 234, 56]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {−4,−3,…,50}, and designed minimum distance d ≥ |I|+1 = 56 [i]
- linear OA(9124, 364, F9, 52) (dual of [364, 240, 53]-code), using the expurgated narrow-sense BCH-code C(I) with length 364 | 93−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(9133, 364, F9, 56) (dual of [364, 231, 57]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {−4,−3,…,51}, and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(9121, 364, F9, 51) (dual of [364, 243, 52]-code), using the expurgated narrow-sense BCH-code C(I) with length 364 | 93−1, defining interval I = [0,50], and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9136, 188, F9, 2, 56) (dual of [(188, 2), 240, 57]-NRT-code) | [i] | OOA Folding |