Information on Result #721104
Linear OA(976, 834, F9, 22) (dual of [834, 758, 23]-code), using construction XX applied to C1 = C([195,215]), C2 = C([194,211]), C3 = C1 + C2 = C([195,211]), and C∩ = C1 ∩ C2 = C([194,215]) based on
- linear OA(969, 820, F9, 21) (dual of [820, 751, 22]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {195,196,…,215}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(965, 820, F9, 18) (dual of [820, 755, 19]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {194,195,…,211}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(973, 820, F9, 22) (dual of [820, 747, 23]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {194,195,…,215}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(961, 820, F9, 17) (dual of [820, 759, 18]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {195,196,…,211}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(976, 417, F9, 2, 22) (dual of [(417, 2), 758, 23]-NRT-code) | [i] | OOA Folding |