Information on Result #722204

Linear OA(1694, 259, F16, 55) (dual of [259, 165, 56]-code), using construction XX applied to C1 = C([254,52]), C2 = C([0,53]), C3 = C1 + C2 = C([0,52]), and C∩ = C1 ∩ C2 = C([254,53]) based on
  1. linear OA(1692, 255, F16, 54) (dual of [255, 163, 55]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,52}, and designed minimum distance d ≥ |I|+1 = 55 [i]
  2. linear OA(1692, 255, F16, 54) (dual of [255, 163, 55]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,53], and designed minimum distance d ≥ |I|+1 = 55 [i]
  3. linear OA(1694, 255, F16, 55) (dual of [255, 161, 56]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,53}, and designed minimum distance d ≥ |I|+1 = 56 [i]
  4. linear OA(1690, 255, F16, 53) (dual of [255, 165, 54]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,52], and designed minimum distance d ≥ |I|+1 = 54 [i]
  5. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(16100, 272, F16, 55) (dual of [272, 172, 56]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(16101, 280, F16, 55) (dual of [280, 179, 56]-code) [i]
3Linear OA(16102, 291, F16, 55) (dual of [291, 189, 56]-code) [i]