Information on Result #722332

Linear OA(16106, 259, F16, 61) (dual of [259, 153, 62]-code), using construction XX applied to C1 = C([254,58]), C2 = C([0,59]), C3 = C1 + C2 = C([0,58]), and C∩ = C1 ∩ C2 = C([254,59]) based on
  1. linear OA(16104, 255, F16, 60) (dual of [255, 151, 61]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,58}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(16104, 255, F16, 60) (dual of [255, 151, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  3. linear OA(16106, 255, F16, 61) (dual of [255, 149, 62]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,59}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  4. linear OA(16102, 255, F16, 59) (dual of [255, 153, 60]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,58], and designed minimum distance d ≥ |I|+1 = 60 [i]
  5. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(16109, 270, F16, 61) (dual of [270, 161, 62]-code) [i]VarÅ¡amov–Edel Lengthening