Information on Result #723465
Linear OA(2539, 624, F25, 20) (dual of [624, 585, 21]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {7,8,…,26}, and designed minimum distance d ≥ |I|+1 = 21
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2564, 665, F25, 26) (dual of [665, 601, 27]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2563, 665, F25, 26) (dual of [665, 602, 27]-code) | [i] | ✔ | |
3 | Linear OA(2565, 667, F25, 27) (dual of [667, 602, 28]-code) | [i] | ✔ | |
4 | Linear OA(2558, 643, F25, 28) (dual of [643, 585, 29]-code) | [i] | ✔ | |
5 | Linear OA(2561, 646, F25, 29) (dual of [646, 585, 30]-code) | [i] | ✔ | |
6 | Linear OA(2564, 649, F25, 30) (dual of [649, 585, 31]-code) | [i] | ✔ | |
7 | Linear OA(2567, 652, F25, 31) (dual of [652, 585, 32]-code) | [i] | ✔ | |
8 | Linear OA(2571, 655, F25, 32) (dual of [655, 584, 33]-code) | [i] | ✔ | |
9 | Linear OA(2570, 655, F25, 32) (dual of [655, 585, 33]-code) | [i] | ✔ | |
10 | Linear OA(2574, 658, F25, 33) (dual of [658, 584, 34]-code) | [i] | ✔ | |
11 | Linear OA(2577, 658, F25, 34) (dual of [658, 581, 35]-code) | [i] | ✔ | |
12 | Linear OA(2573, 658, F25, 33) (dual of [658, 585, 34]-code) | [i] | ✔ | |
13 | Linear OA(2577, 661, F25, 34) (dual of [661, 584, 35]-code) | [i] | ✔ | |
14 | Linear OA(2580, 661, F25, 35) (dual of [661, 581, 36]-code) | [i] | ✔ | |
15 | Linear OA(2576, 661, F25, 34) (dual of [661, 585, 35]-code) | [i] | ✔ | |
16 | Linear OA(2580, 664, F25, 35) (dual of [664, 584, 36]-code) | [i] | ✔ | |
17 | Linear OA(2583, 664, F25, 36) (dual of [664, 581, 37]-code) | [i] | ✔ | |
18 | Linear OA(2579, 664, F25, 35) (dual of [664, 585, 36]-code) | [i] | ✔ | |
19 | Linear OA(2583, 667, F25, 36) (dual of [667, 584, 37]-code) | [i] | ✔ | |
20 | Linear OA(2586, 667, F25, 37) (dual of [667, 581, 38]-code) | [i] | ✔ | |
21 | Linear OA(2582, 667, F25, 36) (dual of [667, 585, 37]-code) | [i] | ✔ | |
22 | Linear OA(2586, 670, F25, 37) (dual of [670, 584, 38]-code) | [i] | ✔ | |
23 | Linear OA(2589, 670, F25, 38) (dual of [670, 581, 39]-code) | [i] | ✔ | |
24 | Linear OA(2585, 670, F25, 37) (dual of [670, 585, 38]-code) | [i] | ✔ | |
25 | Linear OA(2589, 673, F25, 38) (dual of [673, 584, 39]-code) | [i] | ✔ | |
26 | Linear OA(2592, 673, F25, 39) (dual of [673, 581, 40]-code) | [i] | ✔ | |
27 | Linear OA(2588, 673, F25, 38) (dual of [673, 585, 39]-code) | [i] | ✔ | |
28 | Linear OA(2592, 676, F25, 39) (dual of [676, 584, 40]-code) | [i] | ✔ | |
29 | Linear OA(2595, 676, F25, 40) (dual of [676, 581, 41]-code) | [i] | ✔ | |
30 | Linear OA(2591, 676, F25, 39) (dual of [676, 585, 40]-code) | [i] | ✔ | |
31 | Linear OA(2596, 681, F25, 40) (dual of [681, 585, 41]-code) | [i] | ✔ | |
32 | Linear OA(2595, 679, F25, 40) (dual of [679, 584, 41]-code) | [i] | ✔ | |
33 | Linear OA(2599, 681, F25, 41) (dual of [681, 582, 42]-code) | [i] | ✔ | |
34 | Linear OA(2598, 679, F25, 41) (dual of [679, 581, 42]-code) | [i] | ✔ | |
35 | Linear OA(25101, 686, F25, 41) (dual of [686, 585, 42]-code) | [i] | ✔ |