Information on Result #723597
Linear OA(2532, 624, F25, 16) (dual of [624, 592, 17]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {10,11,…,25}, and designed minimum distance d ≥ |I|+1 = 17
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2562, 654, F25, 28) (dual of [654, 592, 29]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2567, 659, F25, 29) (dual of [659, 592, 30]-code) | [i] | ✔ | |
3 | Linear OA(2566, 657, F25, 29) (dual of [657, 591, 30]-code) | [i] | ✔ | |
4 | Linear OA(2565, 657, F25, 29) (dual of [657, 592, 30]-code) | [i] | ✔ | |
5 | Linear OA(2570, 662, F25, 30) (dual of [662, 592, 31]-code) | [i] | ✔ | |
6 | Linear OA(2569, 660, F25, 30) (dual of [660, 591, 31]-code) | [i] | ✔ | |
7 | Linear OA(2568, 660, F25, 30) (dual of [660, 592, 31]-code) | [i] | ✔ | |
8 | Linear OA(2573, 665, F25, 31) (dual of [665, 592, 32]-code) | [i] | ✔ | |
9 | Linear OA(2572, 663, F25, 31) (dual of [663, 591, 32]-code) | [i] | ✔ | |
10 | Linear OA(2571, 663, F25, 31) (dual of [663, 592, 32]-code) | [i] | ✔ | |
11 | Linear OA(2576, 668, F25, 32) (dual of [668, 592, 33]-code) | [i] | ✔ | |
12 | Linear OA(2575, 666, F25, 32) (dual of [666, 591, 33]-code) | [i] | ✔ | |
13 | Linear OA(2574, 666, F25, 32) (dual of [666, 592, 33]-code) | [i] | ✔ | |
14 | Linear OA(2579, 671, F25, 33) (dual of [671, 592, 34]-code) | [i] | ✔ | |
15 | Linear OA(2578, 669, F25, 33) (dual of [669, 591, 34]-code) | [i] | ✔ | |
16 | Linear OA(2577, 669, F25, 33) (dual of [669, 592, 34]-code) | [i] | ✔ | |
17 | Linear OA(2582, 674, F25, 34) (dual of [674, 592, 35]-code) | [i] | ✔ | |
18 | Linear OA(2581, 672, F25, 34) (dual of [672, 591, 35]-code) | [i] | ✔ | |
19 | Linear OA(2580, 672, F25, 34) (dual of [672, 592, 35]-code) | [i] | ✔ | |
20 | Linear OA(2585, 677, F25, 35) (dual of [677, 592, 36]-code) | [i] | ✔ | |
21 | Linear OA(2584, 675, F25, 35) (dual of [675, 591, 36]-code) | [i] | ✔ | |
22 | Linear OA(2583, 675, F25, 35) (dual of [675, 592, 36]-code) | [i] | ✔ | |
23 | Linear OA(2588, 680, F25, 36) (dual of [680, 592, 37]-code) | [i] | ✔ | |
24 | Linear OA(2587, 678, F25, 36) (dual of [678, 591, 37]-code) | [i] | ✔ | |
25 | Linear OA(2591, 680, F25, 37) (dual of [680, 589, 38]-code) | [i] | ✔ | |
26 | Linear OA(2590, 678, F25, 37) (dual of [678, 588, 38]-code) | [i] | ✔ | |
27 | Linear OA(2591, 682, F25, 37) (dual of [682, 591, 38]-code) | [i] | ✔ |