Information on Result #723638
Linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {9,10,…,26}, and designed minimum distance d ≥ |I|+1 = 19
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2560, 649, F25, 28) (dual of [649, 589, 29]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2563, 652, F25, 29) (dual of [652, 589, 30]-code) | [i] | ✔ | |
3 | Linear OA(2567, 655, F25, 30) (dual of [655, 588, 31]-code) | [i] | ✔ | |
4 | Linear OA(2566, 655, F25, 30) (dual of [655, 589, 31]-code) | [i] | ✔ | |
5 | Linear OA(2570, 658, F25, 31) (dual of [658, 588, 32]-code) | [i] | ✔ | |
6 | Linear OA(2573, 658, F25, 32) (dual of [658, 585, 33]-code) | [i] | ✔ | |
7 | Linear OA(2569, 658, F25, 31) (dual of [658, 589, 32]-code) | [i] | ✔ | |
8 | Linear OA(2573, 661, F25, 32) (dual of [661, 588, 33]-code) | [i] | ✔ | |
9 | Linear OA(2576, 661, F25, 33) (dual of [661, 585, 34]-code) | [i] | ✔ | |
10 | Linear OA(2572, 661, F25, 32) (dual of [661, 589, 33]-code) | [i] | ✔ | |
11 | Linear OA(2576, 664, F25, 33) (dual of [664, 588, 34]-code) | [i] | ✔ | |
12 | Linear OA(2579, 664, F25, 34) (dual of [664, 585, 35]-code) | [i] | ✔ | |
13 | Linear OA(2575, 664, F25, 33) (dual of [664, 589, 34]-code) | [i] | ✔ | |
14 | Linear OA(2579, 667, F25, 34) (dual of [667, 588, 35]-code) | [i] | ✔ | |
15 | Linear OA(2582, 667, F25, 35) (dual of [667, 585, 36]-code) | [i] | ✔ | |
16 | Linear OA(2578, 667, F25, 34) (dual of [667, 589, 35]-code) | [i] | ✔ | |
17 | Linear OA(2582, 670, F25, 35) (dual of [670, 588, 36]-code) | [i] | ✔ | |
18 | Linear OA(2585, 670, F25, 36) (dual of [670, 585, 37]-code) | [i] | ✔ | |
19 | Linear OA(2581, 670, F25, 35) (dual of [670, 589, 36]-code) | [i] | ✔ | |
20 | Linear OA(2585, 673, F25, 36) (dual of [673, 588, 37]-code) | [i] | ✔ | |
21 | Linear OA(2588, 673, F25, 37) (dual of [673, 585, 38]-code) | [i] | ✔ | |
22 | Linear OA(2584, 673, F25, 36) (dual of [673, 589, 37]-code) | [i] | ✔ | |
23 | Linear OA(2588, 676, F25, 37) (dual of [676, 588, 38]-code) | [i] | ✔ | |
24 | Linear OA(2591, 676, F25, 38) (dual of [676, 585, 39]-code) | [i] | ✔ | |
25 | Linear OA(2587, 676, F25, 37) (dual of [676, 589, 38]-code) | [i] | ✔ | |
26 | Linear OA(2592, 681, F25, 38) (dual of [681, 589, 39]-code) | [i] | ✔ | |
27 | Linear OA(2591, 679, F25, 38) (dual of [679, 588, 39]-code) | [i] | ✔ | |
28 | Linear OA(2595, 681, F25, 39) (dual of [681, 586, 40]-code) | [i] | ✔ | |
29 | Linear OA(2594, 679, F25, 39) (dual of [679, 585, 40]-code) | [i] | ✔ |