Information on Result #723818

Linear OA(2572, 660, F25, 32) (dual of [660, 588, 33]-code), using construction XX applied to C1 = C([622,25]), C2 = C([8,29]), C3 = C1 + C2 = C([8,25]), and C∩ = C1 ∩ C2 = C([622,29]) based on
  1. linear OA(2553, 624, F25, 28) (dual of [624, 571, 29]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,25}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  2. linear OA(2543, 624, F25, 22) (dual of [624, 581, 23]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {8,9,…,29}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,29}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(2536, 624, F25, 18) (dual of [624, 588, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {8,9,…,25}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  5. linear OA(259, 26, F25, 9) (dual of [26, 17, 10]-code or 26-arc in PG(8,25)), using
  6. linear OA(253, 10, F25, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,25) or 10-cap in PG(2,25)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2572, 330, F25, 2, 32) (dual of [(330, 2), 588, 33]-NRT-code) [i]OOA Folding