Information on Result #724691
Linear OA(2570, 624, F25, 37) (dual of [624, 554, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(25104, 676, F25, 46) (dual of [676, 572, 47]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2572, 628, F25, 38) (dual of [628, 556, 39]-code) | [i] | ✔ | |
3 | Linear OA(25109, 681, F25, 47) (dual of [681, 572, 48]-code) | [i] | ✔ | |
4 | Linear OA(25108, 679, F25, 47) (dual of [679, 571, 48]-code) | [i] | ✔ | |
5 | Linear OA(25107, 676, F25, 47) (dual of [676, 569, 48]-code) | [i] | ✔ | |
6 | Linear OA(25103, 673, F25, 46) (dual of [673, 570, 47]-code) | [i] | ✔ | |
7 | Linear OA(2575, 631, F25, 39) (dual of [631, 556, 40]-code) | [i] | ✔ | |
8 | Linear OA(25110, 676, F25, 48) (dual of [676, 566, 49]-code) | [i] | ✔ | |
9 | Linear OA(25106, 673, F25, 47) (dual of [673, 567, 48]-code) | [i] | ✔ | |
10 | Linear OA(25102, 670, F25, 46) (dual of [670, 568, 47]-code) | [i] | ✔ | |
11 | Linear OA(2578, 634, F25, 40) (dual of [634, 556, 41]-code) | [i] | ✔ | |
12 | Linear OA(25109, 673, F25, 48) (dual of [673, 564, 49]-code) | [i] | ✔ | |
13 | Linear OA(25105, 670, F25, 47) (dual of [670, 565, 48]-code) | [i] | ✔ | |
14 | Linear OA(25101, 667, F25, 46) (dual of [667, 566, 47]-code) | [i] | ✔ | |
15 | Linear OA(2581, 637, F25, 41) (dual of [637, 556, 42]-code) | [i] | ✔ | |
16 | Linear OA(25108, 670, F25, 48) (dual of [670, 562, 49]-code) | [i] | ✔ | |
17 | Linear OA(25104, 667, F25, 47) (dual of [667, 563, 48]-code) | [i] | ✔ | |
18 | Linear OA(25100, 664, F25, 46) (dual of [664, 564, 47]-code) | [i] | ✔ | |
19 | Linear OA(2584, 640, F25, 42) (dual of [640, 556, 43]-code) | [i] | ✔ | |
20 | Linear OA(25107, 667, F25, 48) (dual of [667, 560, 49]-code) | [i] | ✔ | |
21 | Linear OA(25103, 664, F25, 47) (dual of [664, 561, 48]-code) | [i] | ✔ | |
22 | Linear OA(2599, 661, F25, 46) (dual of [661, 562, 47]-code) | [i] | ✔ | |
23 | Linear OA(2587, 643, F25, 43) (dual of [643, 556, 44]-code) | [i] | ✔ | |
24 | Linear OA(25106, 664, F25, 48) (dual of [664, 558, 49]-code) | [i] | ✔ | |
25 | Linear OA(25102, 661, F25, 47) (dual of [661, 559, 48]-code) | [i] | ✔ | |
26 | Linear OA(2598, 658, F25, 46) (dual of [658, 560, 47]-code) | [i] | ✔ | |
27 | Linear OA(2590, 646, F25, 44) (dual of [646, 556, 45]-code) | [i] | ✔ | |
28 | Linear OA(25105, 661, F25, 48) (dual of [661, 556, 49]-code) | [i] | ✔ | |
29 | Linear OA(25101, 658, F25, 47) (dual of [658, 557, 48]-code) | [i] | ✔ | |
30 | Linear OA(2597, 655, F25, 46) (dual of [655, 558, 47]-code) | [i] | ✔ | |
31 | Linear OA(2593, 649, F25, 45) (dual of [649, 556, 46]-code) | [i] | ✔ | |
32 | Linear OA(25104, 658, F25, 48) (dual of [658, 554, 49]-code) | [i] | ✔ | |
33 | Linear OA(25100, 655, F25, 47) (dual of [655, 555, 48]-code) | [i] | ✔ | |
34 | Linear OA(2596, 652, F25, 46) (dual of [652, 556, 47]-code) | [i] | ✔ | |
35 | Linear OA(2574, 628, F25, 39) (dual of [628, 554, 40]-code) | [i] | ✔ | |
36 | Linear OA(2577, 631, F25, 40) (dual of [631, 554, 41]-code) | [i] | ✔ | |
37 | Linear OA(2580, 634, F25, 41) (dual of [634, 554, 42]-code) | [i] | ✔ | |
38 | Linear OA(2583, 637, F25, 42) (dual of [637, 554, 43]-code) | [i] | ✔ | |
39 | Linear OA(2586, 640, F25, 43) (dual of [640, 554, 44]-code) | [i] | ✔ | |
40 | Linear OA(2589, 643, F25, 44) (dual of [643, 554, 45]-code) | [i] | ✔ | |
41 | Linear OA(2592, 646, F25, 45) (dual of [646, 554, 46]-code) | [i] | ✔ | |
42 | Linear OA(2595, 649, F25, 46) (dual of [649, 554, 47]-code) | [i] | ✔ | |
43 | Linear OA(2598, 652, F25, 47) (dual of [652, 554, 48]-code) | [i] | ✔ | |
44 | Linear OA(25101, 655, F25, 48) (dual of [655, 554, 49]-code) | [i] | ✔ | |
45 | Linear OA(25104, 655, F25, 49) (dual of [655, 551, 50]-code) | [i] | ✔ | |
46 | Linear OA(25104, 658, F25, 49) (dual of [658, 554, 50]-code) | [i] | ✔ | |
47 | Linear OA(25107, 658, F25, 50) (dual of [658, 551, 51]-code) | [i] | ✔ | |
48 | Linear OA(25107, 661, F25, 50) (dual of [661, 554, 51]-code) | [i] | ✔ |