Information on Result #725140
Linear OA(2733, 186, F27, 18) (dual of [186, 153, 19]-code), using construction XX applied to C1 = C([181,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([181,16]) based on
- linear OA(2731, 182, F27, 17) (dual of [182, 151, 18]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2731, 182, F27, 17) (dual of [182, 151, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2733, 182, F27, 18) (dual of [182, 149, 19]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2729, 182, F27, 16) (dual of [182, 153, 17]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(27103, 918, F27, 37) (dual of [918, 815, 38]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(27101, 918, F27, 36) (dual of [918, 817, 37]-code) | [i] | ||
3 | Linear OOA(2733, 93, F27, 2, 18) (dual of [(93, 2), 153, 19]-NRT-code) | [i] | OOA Folding |