Information on Result #725171
Linear OA(2750, 186, F27, 27) (dual of [186, 136, 28]-code), using construction XX applied to C1 = C([181,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([181,25]) based on
- linear OA(2748, 182, F27, 26) (dual of [182, 134, 27]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(2748, 182, F27, 26) (dual of [182, 134, 27]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(2750, 182, F27, 27) (dual of [182, 132, 28]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(2746, 182, F27, 25) (dual of [182, 136, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2750, 93, F27, 2, 27) (dual of [(93, 2), 136, 28]-NRT-code) | [i] | OOA Folding |