Information on Result #726095

Linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2781, 782, F27, 33) (dual of [782, 701, 34]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2780, 779, F27, 33) (dual of [779, 699, 34]-code) [i]
3Linear OA(2779, 776, F27, 33) (dual of [776, 697, 34]-code) [i]
4Linear OA(2778, 773, F27, 33) (dual of [773, 695, 34]-code) [i]
5Linear OA(2777, 770, F27, 33) (dual of [770, 693, 34]-code) [i]
6Linear OA(2777, 771, F27, 33) (dual of [771, 694, 34]-code) [i]
7Linear OA(2776, 769, F27, 33) (dual of [769, 693, 34]-code) [i]
8Linear OA(2775, 767, F27, 33) (dual of [767, 692, 34]-code) [i]
9Linear OA(2780, 780, F27, 33) (dual of [780, 700, 34]-code) [i]
10Linear OA(2779, 777, F27, 33) (dual of [777, 698, 34]-code) [i]
11Linear OA(2778, 774, F27, 33) (dual of [774, 696, 34]-code) [i]
12Linear OA(2774, 765, F27, 33) (dual of [765, 691, 34]-code) [i]
13Linear OA(2764, 732, F27, 34) (dual of [732, 668, 35]-code) [i]
14Linear OA(2767, 735, F27, 35) (dual of [735, 668, 36]-code) [i]
15Linear OA(2770, 738, F27, 36) (dual of [738, 668, 37]-code) [i]
16Linear OA(2773, 741, F27, 37) (dual of [741, 668, 38]-code) [i]
17Linear OA(2776, 744, F27, 38) (dual of [744, 668, 39]-code) [i]
18Linear OA(2796, 771, F27, 43) (dual of [771, 675, 44]-code) [i]
19Linear OA(2795, 769, F27, 43) (dual of [769, 674, 44]-code) [i]
20Linear OA(2791, 765, F27, 42) (dual of [765, 674, 43]-code) [i]
21Linear OA(2779, 747, F27, 39) (dual of [747, 668, 40]-code) [i]
22Linear OA(2794, 767, F27, 43) (dual of [767, 673, 44]-code) [i]
23Linear OA(2790, 762, F27, 42) (dual of [762, 672, 43]-code) [i]
24Linear OA(2782, 750, F27, 40) (dual of [750, 668, 41]-code) [i]
25Linear OA(2793, 764, F27, 43) (dual of [764, 671, 44]-code) [i]
26Linear OA(2789, 759, F27, 42) (dual of [759, 670, 43]-code) [i]
27Linear OA(2785, 753, F27, 41) (dual of [753, 668, 42]-code) [i]
28Linear OA(2792, 761, F27, 43) (dual of [761, 669, 44]-code) [i]
29Linear OA(2788, 756, F27, 42) (dual of [756, 668, 43]-code) [i]
30Linear OA(2791, 758, F27, 43) (dual of [758, 667, 44]-code) [i]
31Linear OA(2766, 732, F27, 35) (dual of [732, 666, 36]-code) [i]
32Linear OA(2769, 735, F27, 36) (dual of [735, 666, 37]-code) [i]
33Linear OA(2772, 738, F27, 37) (dual of [738, 666, 38]-code) [i]
34Linear OA(2775, 741, F27, 38) (dual of [741, 666, 39]-code) [i]
35Linear OA(2778, 744, F27, 39) (dual of [744, 666, 40]-code) [i]
36Linear OA(2781, 747, F27, 40) (dual of [747, 666, 41]-code) [i]
37Linear OA(2784, 750, F27, 41) (dual of [750, 666, 42]-code) [i]
38Linear OA(2787, 753, F27, 42) (dual of [753, 666, 43]-code) [i]
39Linear OA(2790, 756, F27, 43) (dual of [756, 666, 44]-code) [i]
40Linear OA(2793, 758, F27, 44) (dual of [758, 665, 45]-code) [i]
41Linear OA(2793, 759, F27, 44) (dual of [759, 666, 45]-code) [i]
42Linear OA(2796, 761, F27, 45) (dual of [761, 665, 46]-code) [i]
43Linear OA(2796, 762, F27, 45) (dual of [762, 666, 46]-code) [i]
44Linear OA(2799, 764, F27, 46) (dual of [764, 665, 47]-code) [i]
45Linear OA(2799, 765, F27, 46) (dual of [765, 666, 47]-code) [i]
46Linear OA(27102, 767, F27, 47) (dual of [767, 665, 48]-code) [i]
47Linear OA(27102, 768, F27, 47) (dual of [768, 666, 48]-code) [i]
48Linear OA(27105, 770, F27, 48) (dual of [770, 665, 49]-code) [i]
49Linear OA(27108, 770, F27, 49) (dual of [770, 662, 50]-code) [i]
50Linear OA(27105, 771, F27, 48) (dual of [771, 666, 49]-code) [i]
51Linear OA(27108, 773, F27, 49) (dual of [773, 665, 50]-code) [i]
52Linear OA(27108, 774, F27, 49) (dual of [774, 666, 50]-code) [i]