Information on Result #726095
Linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2781, 782, F27, 33) (dual of [782, 701, 34]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2780, 779, F27, 33) (dual of [779, 699, 34]-code) | [i] | ✔ | |
3 | Linear OA(2779, 776, F27, 33) (dual of [776, 697, 34]-code) | [i] | ✔ | |
4 | Linear OA(2778, 773, F27, 33) (dual of [773, 695, 34]-code) | [i] | ✔ | |
5 | Linear OA(2777, 770, F27, 33) (dual of [770, 693, 34]-code) | [i] | ✔ | |
6 | Linear OA(2777, 771, F27, 33) (dual of [771, 694, 34]-code) | [i] | ✔ | |
7 | Linear OA(2776, 769, F27, 33) (dual of [769, 693, 34]-code) | [i] | ✔ | |
8 | Linear OA(2775, 767, F27, 33) (dual of [767, 692, 34]-code) | [i] | ✔ | |
9 | Linear OA(2780, 780, F27, 33) (dual of [780, 700, 34]-code) | [i] | ✔ | |
10 | Linear OA(2779, 777, F27, 33) (dual of [777, 698, 34]-code) | [i] | ✔ | |
11 | Linear OA(2778, 774, F27, 33) (dual of [774, 696, 34]-code) | [i] | ✔ | |
12 | Linear OA(2774, 765, F27, 33) (dual of [765, 691, 34]-code) | [i] | ✔ | |
13 | Linear OA(2764, 732, F27, 34) (dual of [732, 668, 35]-code) | [i] | ✔ | |
14 | Linear OA(2767, 735, F27, 35) (dual of [735, 668, 36]-code) | [i] | ✔ | |
15 | Linear OA(2770, 738, F27, 36) (dual of [738, 668, 37]-code) | [i] | ✔ | |
16 | Linear OA(2773, 741, F27, 37) (dual of [741, 668, 38]-code) | [i] | ✔ | |
17 | Linear OA(2776, 744, F27, 38) (dual of [744, 668, 39]-code) | [i] | ✔ | |
18 | Linear OA(2796, 771, F27, 43) (dual of [771, 675, 44]-code) | [i] | ✔ | |
19 | Linear OA(2795, 769, F27, 43) (dual of [769, 674, 44]-code) | [i] | ✔ | |
20 | Linear OA(2791, 765, F27, 42) (dual of [765, 674, 43]-code) | [i] | ✔ | |
21 | Linear OA(2779, 747, F27, 39) (dual of [747, 668, 40]-code) | [i] | ✔ | |
22 | Linear OA(2794, 767, F27, 43) (dual of [767, 673, 44]-code) | [i] | ✔ | |
23 | Linear OA(2790, 762, F27, 42) (dual of [762, 672, 43]-code) | [i] | ✔ | |
24 | Linear OA(2782, 750, F27, 40) (dual of [750, 668, 41]-code) | [i] | ✔ | |
25 | Linear OA(2793, 764, F27, 43) (dual of [764, 671, 44]-code) | [i] | ✔ | |
26 | Linear OA(2789, 759, F27, 42) (dual of [759, 670, 43]-code) | [i] | ✔ | |
27 | Linear OA(2785, 753, F27, 41) (dual of [753, 668, 42]-code) | [i] | ✔ | |
28 | Linear OA(2792, 761, F27, 43) (dual of [761, 669, 44]-code) | [i] | ✔ | |
29 | Linear OA(2788, 756, F27, 42) (dual of [756, 668, 43]-code) | [i] | ✔ | |
30 | Linear OA(2791, 758, F27, 43) (dual of [758, 667, 44]-code) | [i] | ✔ | |
31 | Linear OA(2766, 732, F27, 35) (dual of [732, 666, 36]-code) | [i] | ✔ | |
32 | Linear OA(2769, 735, F27, 36) (dual of [735, 666, 37]-code) | [i] | ✔ | |
33 | Linear OA(2772, 738, F27, 37) (dual of [738, 666, 38]-code) | [i] | ✔ | |
34 | Linear OA(2775, 741, F27, 38) (dual of [741, 666, 39]-code) | [i] | ✔ | |
35 | Linear OA(2778, 744, F27, 39) (dual of [744, 666, 40]-code) | [i] | ✔ | |
36 | Linear OA(2781, 747, F27, 40) (dual of [747, 666, 41]-code) | [i] | ✔ | |
37 | Linear OA(2784, 750, F27, 41) (dual of [750, 666, 42]-code) | [i] | ✔ | |
38 | Linear OA(2787, 753, F27, 42) (dual of [753, 666, 43]-code) | [i] | ✔ | |
39 | Linear OA(2790, 756, F27, 43) (dual of [756, 666, 44]-code) | [i] | ✔ | |
40 | Linear OA(2793, 758, F27, 44) (dual of [758, 665, 45]-code) | [i] | ✔ | |
41 | Linear OA(2793, 759, F27, 44) (dual of [759, 666, 45]-code) | [i] | ✔ | |
42 | Linear OA(2796, 761, F27, 45) (dual of [761, 665, 46]-code) | [i] | ✔ | |
43 | Linear OA(2796, 762, F27, 45) (dual of [762, 666, 46]-code) | [i] | ✔ | |
44 | Linear OA(2799, 764, F27, 46) (dual of [764, 665, 47]-code) | [i] | ✔ | |
45 | Linear OA(2799, 765, F27, 46) (dual of [765, 666, 47]-code) | [i] | ✔ | |
46 | Linear OA(27102, 767, F27, 47) (dual of [767, 665, 48]-code) | [i] | ✔ | |
47 | Linear OA(27102, 768, F27, 47) (dual of [768, 666, 48]-code) | [i] | ✔ | |
48 | Linear OA(27105, 770, F27, 48) (dual of [770, 665, 49]-code) | [i] | ✔ | |
49 | Linear OA(27108, 770, F27, 49) (dual of [770, 662, 50]-code) | [i] | ✔ | |
50 | Linear OA(27105, 771, F27, 48) (dual of [771, 666, 49]-code) | [i] | ✔ | |
51 | Linear OA(27108, 773, F27, 49) (dual of [773, 665, 50]-code) | [i] | ✔ | |
52 | Linear OA(27108, 774, F27, 49) (dual of [774, 666, 50]-code) | [i] | ✔ |