Information on Result #727026
Linear OA(27110, 784, F27, 48) (dual of [784, 674, 49]-code), using construction XX applied to C1 = C([718,27]), C2 = C([0,37]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([718,37]) based on
- linear OA(2773, 728, F27, 38) (dual of [728, 655, 39]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−10,−9,…,27}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2772, 728, F27, 38) (dual of [728, 656, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(2792, 728, F27, 48) (dual of [728, 636, 49]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−10,−9,…,37}, and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(2753, 728, F27, 28) (dual of [728, 675, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(279, 28, F27, 9) (dual of [28, 19, 10]-code or 28-arc in PG(8,27)), using
- extended Reed–Solomon code RSe(19,27) [i]
- the expurgated narrow-sense BCH-code C(I) with length 28 | 272−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- linear OA(279, 28, F27, 9) (dual of [28, 19, 10]-code or 28-arc in PG(8,27)) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(27110, 392, F27, 2, 48) (dual of [(392, 2), 674, 49]-NRT-code) | [i] | OOA Folding |