Information on Result #727060
Linear OA(2776, 732, F27, 40) (dual of [732, 656, 41]-code), using construction XX applied to C1 = C([727,37]), C2 = C([0,38]), C3 = C1 + C2 = C([0,37]), and C∩ = C1 ∩ C2 = C([727,38]) based on
- linear OA(2774, 728, F27, 39) (dual of [728, 654, 40]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2774, 728, F27, 39) (dual of [728, 654, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2776, 728, F27, 40) (dual of [728, 652, 41]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,38}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(2772, 728, F27, 38) (dual of [728, 656, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(27100, 796, F27, 40) (dual of [796, 696, 41]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(27101, 800, F27, 40) (dual of [800, 699, 41]-code) | [i] | ||
3 | Linear OA(27102, 808, F27, 40) (dual of [808, 706, 41]-code) | [i] | ||
4 | Linear OA(27103, 814, F27, 40) (dual of [814, 711, 41]-code) | [i] | ||
5 | Linear OA(27104, 816, F27, 40) (dual of [816, 712, 41]-code) | [i] | ||
6 | Linear OA(27105, 820, F27, 40) (dual of [820, 715, 41]-code) | [i] | ||
7 | Linear OA(27106, 826, F27, 40) (dual of [826, 720, 41]-code) | [i] | ||
8 | Linear OA(27107, 828, F27, 40) (dual of [828, 721, 41]-code) | [i] | ||
9 | Linear OA(27108, 830, F27, 40) (dual of [830, 722, 41]-code) | [i] | ||
10 | Linear OA(27109, 832, F27, 40) (dual of [832, 723, 41]-code) | [i] | ||
11 | Linear OA(27110, 834, F27, 40) (dual of [834, 724, 41]-code) | [i] | ||
12 | Linear OA(2783, 757, F27, 40) (dual of [757, 674, 41]-code) | [i] | Varšamov–Edel Lengthening | |
13 | Linear OA(2784, 779, F27, 40) (dual of [779, 695, 41]-code) | [i] | ||
14 | Linear OA(2785, 817, F27, 40) (dual of [817, 732, 41]-code) | [i] | ||
15 | Linear OA(2786, 873, F27, 40) (dual of [873, 787, 41]-code) | [i] | ||
16 | Linear OA(2787, 944, F27, 40) (dual of [944, 857, 41]-code) | [i] | ||
17 | Linear OOA(2776, 366, F27, 2, 40) (dual of [(366, 2), 656, 41]-NRT-code) | [i] | OOA Folding |