Information on Result #727412
Linear OA(3255, 345, F32, 29) (dual of [345, 290, 30]-code), using construction XX applied to C1 = C([340,26]), C2 = C([0,27]), C3 = C1 + C2 = C([0,26]), and C∩ = C1 ∩ C2 = C([340,27]) based on
- linear OA(3253, 341, F32, 28) (dual of [341, 288, 29]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3253, 341, F32, 28) (dual of [341, 288, 29]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3255, 341, F32, 29) (dual of [341, 286, 30]-code), using the BCH-code C(I) with length 341 | 322−1, defining interval I = {−1,0,…,27}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(3251, 341, F32, 27) (dual of [341, 290, 28]-code), using the expurgated narrow-sense BCH-code C(I) with length 341 | 322−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3255, 345, F32, 2, 29) (dual of [(345, 2), 635, 30]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (26, 55, 345)-net over F32 | [i] |