Information on Result #727965
Linear OA(3270, 1064, F32, 29) (dual of [1064, 994, 30]-code), using construction XX applied to C1 = C([1011,13]), C2 = C([0,16]), C3 = C1 + C2 = C([0,13]), and C∩ = C1 ∩ C2 = C([1011,16]) based on
- linear OA(3251, 1023, F32, 26) (dual of [1023, 972, 27]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,13}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(3233, 1023, F32, 17) (dual of [1023, 990, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,16}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(3227, 1023, F32, 14) (dual of [1023, 996, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(3211, 33, F32, 11) (dual of [33, 22, 12]-code or 33-arc in PG(10,32)), using
- extended Reed–Solomon code RSe(22,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(322, 8, F32, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,32)), using
- discarding factors / shortening the dual code based on linear OA(322, 32, F32, 2) (dual of [32, 30, 3]-code or 32-arc in PG(1,32)), using
- Reed–Solomon code RS(30,32) [i]
- discarding factors / shortening the dual code based on linear OA(322, 32, F32, 2) (dual of [32, 30, 3]-code or 32-arc in PG(1,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.